作為半導(dǎo)體激光技術(shù)發(fā)展的里程碑,量子級(jí)聯(lián)激光器(QCL)使中遠(yuǎn)紅外波段高可靠、高功率和高特征溫度半導(dǎo)體激光器的實(shí)現(xiàn)成為可能,為氣體分析等中紅外應(yīng)用提供了新型光源,因此QCL日益受到關(guān)注。尤其是近10年,越來(lái)越多的科研人員開始研究QCL在氣體檢測(cè)方面的應(yīng)用,使得它的優(yōu)勢(shì)和潛力被更多的認(rèn)識(shí)和挖掘。中遠(yuǎn)紅外量子級(jí)聯(lián)激光器(QCL)眾所周知,QCL屬于新一代半導(dǎo)體激光器,它的特性不同于傳統(tǒng)半導(dǎo)體激光器。用中科院半導(dǎo)體所劉峰奇研究員的“兩層含義”解釋,應(yīng)該更加形象。首先是量子含義,是指激光器由納米級(jí)厚度的半導(dǎo)體異質(zhì)結(jié)超薄層構(gòu)成,利用量子限制效應(yīng),通過(guò)調(diào)節(jié)每層材料的厚度和子帶間距,從而調(diào)節(jié)波長(zhǎng);其次是級(jí)聯(lián)含義,它的有源區(qū)由多級(jí)耦合量子阱串接組成,可實(shí)現(xiàn)單電子注入的倍增光子輸出,可望獲得大功率,而普通的半導(dǎo)體激光器是利用電子空穴對(duì)的復(fù)合發(fā)射光子,這是普通激光器不具備的一個(gè)性能。 可調(diào)諧半導(dǎo)體激光器調(diào)制光譜技術(shù)和二氧化碳檢測(cè)技術(shù)可以測(cè)得二氧化碳?xì)怏w濃度值。貴州氧化亞氮QCL激光器加工
激光器的發(fā)展里程碑如下:1960年發(fā)明的固態(tài)激光器和氣體激光器,1962年發(fā)明的雙極型半導(dǎo)體激光器和1994年發(fā)明的單極型量子級(jí)聯(lián)激光器(QCL)是激光領(lǐng)域的三個(gè)重大性里程碑。量子級(jí)聯(lián)激光器的工作原理與通常的半導(dǎo)體激光器截然不同,它打破了傳統(tǒng)p-n結(jié)型半導(dǎo)體激光器的電子-空穴復(fù)合受激輻射機(jī)制,其發(fā)光波長(zhǎng)由半導(dǎo)體能隙來(lái)決定,填補(bǔ)了半導(dǎo)體中紅外激光器的空白。QCL受激輻射過(guò)程只有電子參與,其激射方案是利用在半導(dǎo)體異質(zhì)結(jié)薄層內(nèi)由量子限制效應(yīng)引起的分離電子態(tài)之間產(chǎn)生粒子數(shù)反轉(zhuǎn),從而實(shí)現(xiàn)單電子注入的多光子輸出,并且可以輕松得通過(guò)改變量子阱層的厚度來(lái)改變發(fā)光波長(zhǎng)。量子級(jí)聯(lián)激光器比其它激光器的優(yōu)勢(shì)在于它的級(jí)聯(lián)過(guò)程,電子從高能級(jí)跳躍到低能級(jí)過(guò)程中,不但沒有損失,還可以注入到下一個(gè)過(guò)程再次發(fā)光。這個(gè)級(jí)聯(lián)過(guò)程使這些電子"循環(huán)"起來(lái),從而造就了一種令人驚嘆的激光器。因此,量子級(jí)聯(lián)激光器的發(fā)明被視為半導(dǎo)體激光理論的一次和里程碑。 貴州氧化亞氮QCL激光器加工利用QCL作為光源則在很大程度上擴(kuò)展了可探測(cè)波段,也在一定程度上提高了探測(cè)極限。
量子級(jí)聯(lián)激光器(QuantumCascadeLaser,QCL)作為一種新興的激光技術(shù),正在多個(gè)領(lǐng)域中展現(xiàn)出其獨(dú)特的優(yōu)勢(shì)和廣泛的應(yīng)用潛力。其的優(yōu)點(diǎn)使得產(chǎn)品在市場(chǎng)上備受青睞,尤其是在環(huán)境監(jiān)測(cè)、醫(yī)療成像和工業(yè)檢測(cè)等方面。首先,量子級(jí)聯(lián)激光器具有出色的波長(zhǎng)可調(diào)性,能夠在中紅外范圍內(nèi)實(shí)現(xiàn)高效發(fā)射。這一特性使得量子級(jí)聯(lián)激光器在氣體傳感領(lǐng)域的應(yīng)用尤為突出。通過(guò)精確的波長(zhǎng)調(diào)節(jié),用戶可以針對(duì)特定氣體進(jìn)行高靈敏度的檢測(cè),從而有效解決了傳統(tǒng)傳感器難以檢測(cè)低濃度有害氣體的問題。這不僅提高了環(huán)境監(jiān)測(cè)的精度,也為企業(yè)的安全生產(chǎn)提供了有力保障。其次,量子級(jí)聯(lián)激光器在醫(yī)療成像領(lǐng)域也展現(xiàn)出了巨大的優(yōu)勢(shì)。其高功率和高效率的特性,能夠提升成像系統(tǒng)的分辨率和信噪比,使得醫(yī)生能夠更清晰地觀察到組織和的狀態(tài)。這對(duì)于早期疾病的診斷和方案的制定具有重要意義,從而提高了患者的效率,降低了醫(yī)療成本。
在當(dāng)今高科技迅猛發(fā)展的時(shí)代,量子級(jí)聯(lián)激光器(QCL激光器)憑借其性能,越來(lái)越受到氣體檢測(cè)領(lǐng)域的關(guān)注。作為一種高靈敏度的激光器,QCL激光器能夠在極低濃度的氣體環(huán)境下進(jìn)行準(zhǔn)確檢測(cè),為環(huán)境監(jiān)測(cè)和工業(yè)應(yīng)用提供可靠的數(shù)據(jù)支持。這一特性使得QCL激光器成為氣體分析的工具,尤其在安全監(jiān)測(cè)和環(huán)境保護(hù)等領(lǐng)域,其應(yīng)用價(jià)值不可小覷。QCL激光器的另一個(gè)優(yōu)勢(shì)在于其強(qiáng)大的選擇性。與其他類型的激光器相比,QCL激光器能夠有效地區(qū)分不同氣體分子的吸收特性。這意味著在復(fù)雜的氣體混合環(huán)境中,QCL激光器能夠精確識(shí)別特定氣體的存在,從而減少誤報(bào)的可能性,極大地提高了檢測(cè)的可靠性和準(zhǔn)確性。這種選擇性不僅提升了產(chǎn)品的市場(chǎng)競(jìng)爭(zhēng)力,同時(shí)也為客戶帶來(lái)了更高的滿意度。 TDLAS利用半導(dǎo)體激光器的波長(zhǎng)調(diào)諧特性,可獲得待測(cè)氣體特征吸收峰的吸收光譜,對(duì)氣體定量的分析。
相比較與其它激光器,量子級(jí)聯(lián)激光器的優(yōu)點(diǎn)如下:1)中遠(yuǎn)紅外和太赫茲波段出射;在QCL發(fā)明之前,半導(dǎo)體激光器的發(fā)射波長(zhǎng)主要在可見光和近紅外波段,當(dāng)我們需要使用中遠(yuǎn)紅外和太赫茲波段的激光時(shí),半導(dǎo)體激光器對(duì)此則有些無(wú)能為力,不同體系激光器激射波長(zhǎng)范圍如圖3。QCL的發(fā)明,使得半導(dǎo)體激光器也能激射出中遠(yuǎn)紅外和太赫茲波段的激光。如圖3.不同激光器發(fā)光范圍[15]2)寬波長(zhǎng)范圍;QCL激射波長(zhǎng)取決于子帶間能量差,可以通過(guò)設(shè)計(jì)量子阱層厚度來(lái)實(shí)現(xiàn)波長(zhǎng)控制,所以量子級(jí)聯(lián)激光器的激射波長(zhǎng)范圍極寬(約3-250μm),并且可以根據(jù)實(shí)際需求設(shè)計(jì)特定波長(zhǎng)的激光輸出。3)體積??;QCL相比其它激光器如:一氧化碳激光器(激射波長(zhǎng)為4-5μm)和二氧化碳激光器(激射波長(zhǎng)為μm),具有體積小、重量輕的特點(diǎn),其攜帶方便,便于系統(tǒng)化和集成化。4)單極型結(jié)構(gòu);傳統(tǒng)結(jié)構(gòu)半導(dǎo)體激光器為雙極型,其出光原理依靠的是p-n結(jié)中導(dǎo)帶電子和價(jià)帶空穴復(fù)合所產(chǎn)生的受激輻射,而QCL全程只有電子參與,空穴并未參與輻射發(fā)光過(guò)程,所以量子級(jí)聯(lián)激光器為單極型激光器,且其出射的激光具有很好的單向偏振性。5)高的電子利用效率;因?yàn)镼CL所獨(dú)特的級(jí)聯(lián)結(jié)構(gòu),電子在參與完子帶間躍遷發(fā)光后,并沒有湮滅。 中紅外光譜是分子的基頻吸收區(qū),對(duì)痕量氣體具有極高的敏感度,這使得它成為溫室氣體監(jiān)測(cè)的理想選擇。西藏COQCL激光器價(jià)格
TDLAS技術(shù)采用的半導(dǎo)體激光光源的光譜,寬度遠(yuǎn)小于氣體吸收譜線的展寬,得到單線吸收光譜。貴州氧化亞氮QCL激光器加工
帶間級(jí)聯(lián)激光器(ICL)是實(shí)現(xiàn)3~5μm波段中紅外激光器的重要前沿,其在半導(dǎo)體光電器件技術(shù)、氣體檢測(cè)、醫(yī)學(xué)醫(yī)療以及自由空間光通信等領(lǐng)域具有重要科學(xué)意義和應(yīng)用價(jià)值。近年來(lái),半導(dǎo)體帶間級(jí)聯(lián)激光器的量子阱能帶理論設(shè)計(jì)方法和激光器制備**技術(shù)得到迅速提升。帶間級(jí)聯(lián)激光器是一種以?族體系為主,通過(guò)量子工程的能帶設(shè)計(jì)及其材料外延、工藝制作而成的可以工作于中紅外波段的激光器。由于結(jié)合了傳統(tǒng)的量子阱激光器較長(zhǎng)的上能級(jí)載流子復(fù)合壽命,以及量子級(jí)聯(lián)激光器(QCL)通過(guò)級(jí)聯(lián)結(jié)構(gòu)實(shí)現(xiàn)較高內(nèi)量子效率的優(yōu)點(diǎn),在中紅外波段具有較大的優(yōu)勢(shì)。研究背景中紅外波段包含了許多氣體分子的吸收峰,對(duì)于氣體分子而言,在中紅外波段的中心吸收截面一般比其在近紅外區(qū)的中心吸收截面高幾個(gè)數(shù)量級(jí)。因此,為了獲得更高的靈敏度和更低的檢測(cè)限,利用中紅外的可調(diào)諧半導(dǎo)體激光器吸收光譜技術(shù)(TDLAS)可以實(shí)現(xiàn)對(duì)特殊或有毒氣體的檢測(cè)。常見的位于中紅外波段的氣體分子如圖1所示,諸如礦井氣體甲烷(CH4)分子吸收峰位于3260nm,一氧化碳(CO)分子吸收峰位于4610nm,二氧化碳(CO2)分子吸收峰位于4230nm,氯化氫(HCl)分子吸收峰位于3395nm,溴化氫(HBr)分子吸收峰位于4020nm。 貴州氧化亞氮QCL激光器加工