以備實際測試嚴重偏離計劃時使用。在TMM的定義級,測試過程中引入計劃能力,在TMM的集成級,測試過程引入控制和監(jiān)視活動。兩者均為測試過程提供了可見性,為測試過程持續(xù)進行提供保證。第四級管理和測量級在管理和測量級,測試活動除測試被測程序外,還包括軟件生命周期中各個階段的評審,審查和追查,使測試活動涵蓋了軟件驗證和軟件確認活動。根據管理和測量級的要求,軟件工作產品以及與測試相關的工作產品,如測試計劃,測試設計和測試步驟都要經過評審。因為測試是一個可以量化并度量的過程。為了測量測試過程,測試人員應建立測試數據庫。收集和記錄各軟件工程項目中使用的測試用例,記錄缺陷并按缺陷的嚴重程度劃分等級。此外,所建立的測試規(guī)程應能夠支持軟件組終對測試過程的控制和測量。管理和測量級有3個要實現的成熟度目標:建立**范圍內的評審程序,建立測試過程的測量程序和軟件質量評價。(I)建立**范圍內的評審程序軟件**應在軟件生命周期的各階段實施評審,以便盡早有效地識別,分類和消除軟件中的缺陷。建立評審程序有4個子目標:1)管理層要制訂評審政策支持評審過程。2)測試組和軟件質量保證組要確定并文檔化整個軟件生命周期中的評審目標,評審計劃。安全測試報告排查軟件漏洞,保障軟件安全無憂。軟件產品質量測試機構
本發(fā)明屬于惡意軟件防護技術領域::,涉及一種基于多模態(tài)深度學習的惡意軟件檢測方法。背景技術:::惡意軟件是指在未明確提示用戶或未經用戶許可的情況下,故意編制或設置的,對網絡或系統(tǒng)會產生威脅或潛在威脅的計算機軟件。常見的惡意軟件有計算機**(簡稱**)、特洛伊木馬(簡稱木馬)、計算機蠕蟲(簡稱蠕蟲)、后門、邏輯**等。惡意軟件可能在用戶不知情的情況下竊取計算機用戶的信息和隱私,也可能非法獲得計算機系統(tǒng)和網絡資源的控制,破壞計算機和網絡的可信性、完整性和可用性,從而為惡意軟件控制者謀取非法利益。騰訊安全發(fā)布的《2017年度互聯網安全報告》顯示,2017年騰訊電腦管家pc端總計攔截**近30億次,平均每月攔截木馬**近,共發(fā)現**或木馬***。這些數目龐大、名目繁多的惡意軟件侵蝕著我國的***、經濟、文化、***等各個領域的信息安全,帶來了前所未有的挑戰(zhàn)。當前的反**軟件主要采用基于特征碼的檢測方法,這種方法通過對代碼進行充分研究,獲得惡意軟件特征值(即每種惡意軟件所獨有的十六進制代碼串),如字節(jié)序列、特定的字符串等,通過匹配查找軟件中是否包含惡意軟件特征庫中的特征碼來判斷其是否為惡意軟件。第三方軟件質量測評報價性能測試報告優(yōu)化軟件性能,提升軟件競爭力。
每一種信息的來源或者形式,都可以稱為一種模態(tài)。例如,人有觸覺,聽覺,視覺,嗅覺。多模態(tài)機器學習旨在通過機器學習的方法實現處理和理解多源模態(tài)信息的能力。多模態(tài)學習從1970年代起步,經歷了幾個發(fā)展階段,在2010年后***步入深度學習(deeplearning)階段。在某種意義上,深度學習可以被看作是允許我們“混合和匹配”不同模型以創(chuàng)建復雜的深度多模態(tài)模型。目前,多模態(tài)數據融合主要有三種融合方式:前端融合(early-fusion)即數據水平融合(data-levelfusion)、后端融合(late-fusion)即決策水平融合(decision-levelfusion)以及中間融合(intermediate-fusion)。前端融合將多個**的數據集融合成一個單一的特征向量空間,然后將其用作機器學習算法的輸入,訓練機器學習模型,如圖1所示。由于多模態(tài)數據的前端融合往往無法充分利用多個模態(tài)數據間的互補性,且前端融合的原始數據通常包含大量的冗余信息。因此,多模態(tài)前端融合方法常常與特征提取方法相結合以剔除冗余信息,基于領域經驗從每個模態(tài)中提取更高等別的特征表示,或者應用深度學習算法直接學習特征表示,然后在特性級別上進行融合。后端融合則是將不同模態(tài)數據分別訓練好的分類器輸出決策進行融合,如圖2所示。
k為短序列特征總數,1≤i≤k??蓤?zhí)行文件長短大小不一,為了防止該特征統(tǒng)計有偏,使用∑knk,j進行歸一化處理。逆向文件頻率(inversedocumentfrequency,idf)是一個短序列特征普遍重要性的度量。某一短序列特征的idf,可以由總樣本實施例件數目除以包含該短序列特征之樣本實施例件的數目,再將得到的商取對數得到:其中,|d|指軟件樣本j的總數,|{j:i∈j}|指包含短序列特征i的軟件樣本j的數目。idf的主要思想是:如果包含短序列特征i的軟件練樣本越少,也就是|{j:i∈j}|越小,idf越大,則說明短序列特征i具有很好的類別區(qū)分能力。:如果某一特征在某樣本中以較高的頻率出現,而包含該特征的樣本數目較小,可以產生出高權重的,該特征的。因此,,保留重要的特征。此處選取可能區(qū)分惡意軟件和良性軟件的短序列特征,是因為字節(jié)碼n-grams提取的特征很多,很多都是無效特征,或者效果非常一般的特征,保持這些特征會影響檢測方法的性能和效率,所以要選出有效的特征即可能區(qū)分惡意軟件和良性軟件的短序列特征。步驟s2、將軟件樣本中的類別已知的軟件樣本作為訓練樣本,然后分別采用前端融合方法、后端融合方法和中間融合方法設計三種不同方案的多模態(tài)數據融合方法。基于 AI 視覺識別的自動化檢測系統(tǒng),助力艾策實現生產線上的零缺陷品控目標!
軟件測試技術測試分類編輯軟件測試的狹義論和廣義論——靜態(tài)和動態(tài)的測試軟件測試技術軟件測試的辨證論——正向思維和反向思維軟件測試的風險論——測試是評估軟件測試的經濟學觀點——為盈利而測試軟件測試的標準論——驗證和確認軟件測試技術測試工具編輯幾種常用的測試工具:1、軟件錯誤管理工具Bugzilla2、功能測試工具WinRunner3、負載測試工具LoadRunner4、測試管理工具TestDirector軟件測試技術同名圖書編輯軟件測試技術圖書1書名:軟件測試技術軟件測試技術作者:曲朝陽出版社:**水利水電出版社出版時間:2006ISBN:97開本:16定價:元內容簡介本書詳盡地闡述了軟件測試領域中的一些基本理論和實用技術。首先從軟件測試的基本原則,以及常用的軟件測試技術入手,介紹了與軟件測試領域相關的基礎知識。然后,分別從單元測試、集成測試和系統(tǒng)測試3個層面深入分析了如何選擇和設計有效的測試用例,制定合適的測試策略等主題。**后,討論了面向對象的軟件測試和軟件測試自動化技術。附錄中還附錄了常見的軟件錯誤,供讀者參閱。本書作為軟件測試的實際應用參考書,除了力求突出基本知識和基本概念的表述外,更注重軟件測試技術的運用。2025 年 IT 趨勢展望:深圳艾策的五大技術突破。軟件安全評測公司
艾策醫(yī)療檢測中心為體外診斷試劑提供全流程合規(guī)性驗證服務。軟件產品質量測試機構
本書內容充實、實用性強,可作為高職高專院校計算機軟件軟件測試技術課程的教材,也可作為有關軟件測試的培訓教材,對從事軟件測試實際工作的相關技術人員也具有一定的參考價值。目錄前言第1章軟件測試基本知識第2章測試計劃第3章測試設計和開發(fā)第4章執(zhí)行測試第5章測試技術與應用第6章軟件測試工具第7章測試文檔實例附錄IEEE模板參考文獻軟件測試技術圖書3基本信息書號:軟件測試技術7-113-07054作者:李慶義定價:出版日期:套系名稱:21世紀高校計算機應用技術系列規(guī)劃教材出版單位:**鐵道出版社內容簡介本書主要介紹軟件適用測試技術。內容分為三部分,***部分為概念基礎、測試理論的背景及發(fā)展,簡要地分析了當前測試技術的現狀;第二部分介紹軟件測試的程序分析技術、測試技術,軟件測試的方法和策略,分析了軟件業(yè)在測試方面的研究成果,并總結了測試的基本原則和一些好的實踐經驗;第三部分介紹了兩種測試工具軟件——基于Windows的WinRunner和服務器負載測試軟件WAS。本書結合實際,從一些具體的實例出發(fā),介紹軟件測試的一些基本概念和方法,分析出軟件測試的基本理論知識,適用性比較強。軟件產品質量測試機構