后端融合模型的10折交叉驗證的準(zhǔn)確率是%,對數(shù)損失是,混淆矩陣如圖13所示,規(guī)范化后的混淆矩陣如圖14所示。后端融合模型的roc曲線如圖15所示,其顯示后端融合模型的auc值為。(6)中間融合中間融合的架構(gòu)如圖16所示,中間融合方式用深度神經(jīng)網(wǎng)絡(luò)從三種模態(tài)的特征分別抽取高等特征表示,然后合并學(xué)習(xí)得到的特征表示,再作為下一個深度神經(jīng)網(wǎng)絡(luò)的輸入訓(xùn)練模型,隱藏層的***函數(shù)為relu,輸出層的***函數(shù)是sigmoid,中間使用dropout層進行正則化,防止過擬合,優(yōu)化器(optimizer)采用的是adagrad,batch_size是40。圖16中,用于抽取dll和api信息特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含3個隱含層,其***個隱含層的神經(jīng)元個數(shù)是128,第二個隱含層的神經(jīng)元個數(shù)是64,第三個隱含層的神經(jīng)元個數(shù)是32,且3個隱含層中間間隔設(shè)置有dropout層。用于抽取格式信息特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含2個隱含層,其***個隱含層的神經(jīng)元個數(shù)是64,其第二個隱含層的神經(jīng)元個數(shù)是32,且2個隱含層中間設(shè)置有dropout層。用于抽取字節(jié)碼n-grams特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含4個隱含層,其***個隱含層的神經(jīng)元個數(shù)是512,第二個隱含層的神經(jīng)元個數(shù)是384,第三個隱含層的神經(jīng)元個數(shù)是256,第四個隱含層的神經(jīng)元個數(shù)是125。代碼審計發(fā)現(xiàn)2處潛在內(nèi)存泄漏風(fēng)險,建議版本迭代修復(fù)。第三方軟件系統(tǒng)安全測評報告哪里做
I)應(yīng)用過程數(shù)據(jù)預(yù)防缺陷。這時的軟件**能夠記錄軟件缺陷,分析缺陷模式,識別錯誤根源,制訂防止缺陷再次發(fā)生的計劃,提供**這種括動的辦法,并將這些活動貫穿于全**的各個項目中。應(yīng)用過程數(shù)據(jù)預(yù)防缺陷有礴個成熟度子目標(biāo):1)成立缺陷預(yù)防組。2)識別和記錄在軟件生命周期各階段引入的軟件缺陷和消除的缺陷。3)建立缺陷原因分析機制,確定缺陷原因。4)管理,開發(fā)和測試人員互相配合制訂缺陷預(yù)防計劃,防止已識別的缺陷再次發(fā)生。缺陷預(yù)防計劃要具有可**性。(II)質(zhì)量控制在本級,軟件**通過采用統(tǒng)計采樣技術(shù),測量**的自信度,測量用戶對**的信賴度以及設(shè)定軟件可靠性目標(biāo)來推進測試過程。為了加強軟件質(zhì)量控制,測試組和質(zhì)量保證組要有負(fù)責(zé)質(zhì)量的人員參加,他們應(yīng)掌握能減少軟件缺陷和改進軟件質(zhì)量的技術(shù)和工具。支持統(tǒng)計質(zhì)量控制的子目標(biāo)有:?1)軟件測試組和軟件質(zhì)量保證組建立軟件產(chǎn)品的質(zhì)量目標(biāo),如:產(chǎn)品的缺陷密度,**的自信度以及可信賴度等。2)測試管理者要將這些質(zhì)量目標(biāo)納入測試計劃中。3)培訓(xùn)測試組學(xué)習(xí)和使用統(tǒng)計學(xué)方法。4)收集用戶需求以建立使用模型(III)優(yōu)化測試過程在測試成熟度的***,己能夠量化測試過程。這樣就可以依據(jù)量化結(jié)果來調(diào)整測試過程。遼寧軟件測評公司整合多學(xué)科團隊的定制化檢測方案,體現(xiàn)艾策服務(wù)于制造的技術(shù)深度。
**小化對數(shù)損失基本等價于**大化分類器的準(zhǔn)確度,對于完美的分類器,對數(shù)損失值為0。對數(shù)損失函數(shù)的計算公式如下:其中,y為輸出變量即輸出的測試樣本的檢測結(jié)果,x為輸入變量即測試樣本,l為損失函數(shù),n為測試樣本(待檢測軟件的二進制可執(zhí)行文件)數(shù)目,yij是一個二值指標(biāo),表示與輸入的第i個測試樣本對應(yīng)的類別j,類別j指良性軟件或惡意軟件,pij為輸入的第i個測試樣本屬于類別j的概率,m為總類別數(shù),本實施例中m=2。分類器的性能也可用roc曲線(receiveroperatingcharacteristic)評價,roc曲線的縱軸是檢測率(true****itiverate),橫軸是誤報率(false****itiverate),該曲線反映的是隨著檢測閾值變化下檢測率與誤報率之間的關(guān)系曲線。roc曲線下面積(areaunderroccurve,auc)的值是評價分類器比較綜合的指標(biāo),auc的值通常介于,較大的auc值一般表示分類器的性能較優(yōu)。(3)特征提取提取dll和api信息特征視圖dll(dynamiclinklibrary)文件為動態(tài)鏈接庫文件,執(zhí)行某一個程序時,相應(yīng)的dll文件就會被調(diào)用。一個應(yīng)用程序可使用多個dll文件,一個dll文件也可能被不同的應(yīng)用程序使用。api(applicationprogramminginterface)函數(shù)是windows提供給用戶作為應(yīng)用程序開發(fā)的接口。
[3]軟件測試方法原則編輯1.盡早不斷測試的原則應(yīng)當(dāng)盡早不斷地進行軟件測試。據(jù)統(tǒng)計約60%的錯誤來自設(shè)計以前,并且修正一個軟件錯誤所需的費用將隨著軟件生存周期的進展而上升。錯誤發(fā)現(xiàn)得越早,修正它所需的費用就越少。[4]測試用例由測試輸入數(shù)據(jù)和與之對應(yīng)的預(yù)期輸出結(jié)果這兩部分組成。[4]3.**測試原則(1)**測試原則。這是指軟件測試工作由在經(jīng)濟上和管理上**于開發(fā)機構(gòu)的**進行。程序員應(yīng)避免檢査自己的程序,程序設(shè)計機構(gòu)也不應(yīng)測試自己開發(fā)的程序。軟件開發(fā)者難以客觀、有效地測試自己的軟件,而找出那些因為對需求的誤解而產(chǎn)生的錯誤就更加困難。[4](2)合法和非合法原則。在設(shè)計時,測試用例應(yīng)當(dāng)包括合法的輸入條件和不合法的輸入條件。[4](3)錯誤群集原則。軟件錯誤呈現(xiàn)群集現(xiàn)象。經(jīng)驗表明,某程序段剩余的錯誤數(shù)目與該程序段中已發(fā)現(xiàn)的錯誤數(shù)目成正比,所以應(yīng)該對錯誤群集的程序段進行重點測試。[4](4)嚴(yán)格性原則。嚴(yán)格執(zhí)行測試計劃,排除測試的隨意性。[4](5)覆蓋原則。應(yīng)當(dāng)對每一個測試結(jié)果做***的檢查。[4](6)定義功能測試原則。檢查程序是否做了要做的事*是成功的一半,另一半是看程序是否做了不屬于它做的事。[4](7)回歸測試原則。應(yīng)妥善保留測試用例。2025 年 IT 趨勢展望:深圳艾策的五大技術(shù)突破。
評審步驟以及評審記錄機制。3)評審項由上層****。通過培訓(xùn)參加評審的人員,使他們理解和遵循相牢的評審政策,評審步驟。(II)建立測試過程的測量程序測試過程的側(cè)量程序是評價測試過程質(zhì)量,改進測試過程的基礎(chǔ),對監(jiān)視和控制測試過程至關(guān)重要。測量包括測試進展,測試費用,軟件錯誤和缺陷數(shù)據(jù)以及產(chǎn)品淵量等。建立淵試測量程序有3個子目標(biāo):1)定義**范圍內(nèi)的測試過程測量政策和目標(biāo)。2)制訂測試過程測量計劃。測量計劃中應(yīng)給出收集,分析和應(yīng)用測量數(shù)據(jù)的方法。3)應(yīng)用測量結(jié)果制訂測試過程改進計劃。(III)軟件質(zhì)量評價軟件質(zhì)量評價內(nèi)容包括定義可測量的軟件質(zhì)量屬性,定義評價軟件工作產(chǎn)品的質(zhì)量目標(biāo)等項工作。軟件質(zhì)量評價有2個子目標(biāo):1)管理層,測試組和軟件質(zhì)量保證組要制訂與質(zhì)量有關(guān)的政策,質(zhì)量目標(biāo)和軟件產(chǎn)品質(zhì)量屬性。2)測試過程應(yīng)是結(jié)構(gòu)化,己測量和己評價的,以保證達到質(zhì)量目標(biāo)。第五級?優(yōu)化,預(yù)防缺陷和質(zhì)量控制級由于本級的測試過程是可重復(fù),已定義,已管理和己測量的,因此軟件**能夠優(yōu)化調(diào)整和持續(xù)改進測試過程。測試過程的管理為持續(xù)改進產(chǎn)品質(zhì)量和過程質(zhì)量提供指導(dǎo),并提供必要的基礎(chǔ)設(shè)施。優(yōu)化,預(yù)防缺陷和質(zhì)量控制級有3個要實現(xiàn)的成熟度目標(biāo):。安全掃描確認(rèn)軟件通過ISO 27001標(biāo)準(zhǔn),無高危漏洞記錄。成都計算機軟件檢測報告
用戶隱私測評確認(rèn)數(shù)據(jù)采集范圍超出聲明條款3項。第三方軟件系統(tǒng)安全測評報告哪里做
保留了較多信息,同時由于操作數(shù)比較隨機,某種程度上又沒有抓住主要矛盾,干擾了主要語義信息的提取。pe文件即可移植文件導(dǎo)入節(jié)中的動態(tài)鏈接庫(dll)和應(yīng)用程序接口(api)信息能大致反映軟件的功能和性質(zhì),通過一個可執(zhí)行程序引用的dll和api信息可以粗略的預(yù)測該程序的功能和行為。belaoued和mazouzi應(yīng)用統(tǒng)計khi2檢驗分析了pe格式的惡意軟件和良性軟件的導(dǎo)入節(jié)中的dll和api信息,分析顯示惡意軟件和良性軟件使用的dll和api信息統(tǒng)計上有明顯的區(qū)別。后續(xù)的研究人員提出了挖掘dll和api信息的惡意軟件檢測方法,該類方法提取的特征語義信息豐富,但*從二進制可執(zhí)行文件的導(dǎo)入節(jié)提取特征,忽略了整個可執(zhí)行文件的大量信息。惡意軟件和被***二進制可執(zhí)行文件格式信息上存在一些異常,這些異常是檢測惡意軟件的關(guān)鍵。研究人員提出了基于二進制可執(zhí)行文件格式結(jié)構(gòu)信息的惡意軟件檢測方法,這類方法從二進制可執(zhí)行文件的pe文件頭、節(jié)頭部、資源節(jié)等提取特征,基于這些特征使用機器學(xué)習(xí)分類算法處理,取得了較高的檢測準(zhǔn)確率。這類方法通常不受變形或多態(tài)等混淆技術(shù)影響,提取特征只需要對pe文件進行格式解析,無需遍歷整個可執(zhí)行文件,提取特征速度較快。第三方軟件系統(tǒng)安全測評報告哪里做