圖書(shū)目錄第1章軟件測(cè)試描述第2章常見(jiàn)的軟件測(cè)試方法第3章設(shè)計(jì)測(cè)試第4章程序分析技術(shù)第5章測(cè)試分析技術(shù)第6章測(cè)試自動(dòng)化的優(yōu)越性第7章測(cè)試計(jì)劃與測(cè)試標(biāo)準(zhǔn)第8章介紹一種企業(yè)級(jí)測(cè)試工具第9章學(xué)習(xí)一種負(fù)載測(cè)試軟件第10章軟件測(cè)試的經(jīng)驗(yàn)總結(jié)附錄A常見(jiàn)測(cè)試術(shù)語(yǔ)附錄B測(cè)試技術(shù)分類附錄C常見(jiàn)的編碼錯(cuò)誤附錄D有關(guān)的測(cè)試網(wǎng)站參考文獻(xiàn)軟件測(cè)試技術(shù)圖書(shū)4書(shū)名:軟件測(cè)試技術(shù)第2版作者:徐芳層次:高職高專配套:電子課件出版社:機(jī)械工業(yè)出版社出版時(shí)間:2012-06-26ISBN:978-7-111-37884-6開(kāi)本:16開(kāi)定價(jià):目錄第1章開(kāi)始軟件測(cè)試工作第2章執(zhí)行系統(tǒng)測(cè)試第3章測(cè)試用例設(shè)計(jì)第4章測(cè)試工具應(yīng)用第5章測(cè)試技術(shù)與應(yīng)用第6章成為***的測(cè)試組長(zhǎng)第7章測(cè)試文檔實(shí)例詞條圖冊(cè)更多圖冊(cè)。艾策檢測(cè)針對(duì)智能穿戴設(shè)備開(kāi)發(fā)動(dòng)態(tài)壓力測(cè)試系統(tǒng),確保人機(jī)交互的舒適性與安全性。云南軟件驗(yàn)收測(cè)試報(bào)告
k為短序列特征總數(shù),1≤i≤k??蓤?zhí)行文件長(zhǎng)短大小不一,為了防止該特征統(tǒng)計(jì)有偏,使用∑knk,j進(jìn)行歸一化處理。逆向文件頻率(inversedocumentfrequency,idf)是一個(gè)短序列特征普遍重要性的度量。某一短序列特征的idf,可以由總樣本實(shí)施例件數(shù)目除以包含該短序列特征之樣本實(shí)施例件的數(shù)目,再將得到的商取對(duì)數(shù)得到:其中,|d|指軟件樣本j的總數(shù),|{j:i∈j}|指包含短序列特征i的軟件樣本j的數(shù)目。idf的主要思想是:如果包含短序列特征i的軟件練樣本越少,也就是|{j:i∈j}|越小,idf越大,則說(shuō)明短序列特征i具有很好的類別區(qū)分能力。:如果某一特征在某樣本中以較高的頻率出現(xiàn),而包含該特征的樣本數(shù)目較小,可以產(chǎn)生出高權(quán)重的,該特征的。因此,,保留重要的特征。此處選取可能區(qū)分惡意軟件和良性軟件的短序列特征,是因?yàn)樽止?jié)碼n-grams提取的特征很多,很多都是無(wú)效特征,或者效果非常一般的特征,保持這些特征會(huì)影響檢測(cè)方法的性能和效率,所以要選出有效的特征即可能區(qū)分惡意軟件和良性軟件的短序列特征。步驟s2、將軟件樣本中的類別已知的軟件樣本作為訓(xùn)練樣本,然后分別采用前端融合方法、后端融合方法和中間融合方法設(shè)計(jì)三種不同方案的多模態(tài)數(shù)據(jù)融合方法。西安軟件安全測(cè)評(píng)如何選擇適合企業(yè)的 IT 解決方案?
以備實(shí)際測(cè)試嚴(yán)重偏離計(jì)劃時(shí)使用。在TMM的定義級(jí),測(cè)試過(guò)程中引入計(jì)劃能力,在TMM的集成級(jí),測(cè)試過(guò)程引入控制和監(jiān)視活動(dòng)。兩者均為測(cè)試過(guò)程提供了可見(jiàn)性,為測(cè)試過(guò)程持續(xù)進(jìn)行提供保證。第四級(jí)管理和測(cè)量級(jí)在管理和測(cè)量級(jí),測(cè)試活動(dòng)除測(cè)試被測(cè)程序外,還包括軟件生命周期中各個(gè)階段的評(píng)審,審查和追查,使測(cè)試活動(dòng)涵蓋了軟件驗(yàn)證和軟件確認(rèn)活動(dòng)。根據(jù)管理和測(cè)量級(jí)的要求,軟件工作產(chǎn)品以及與測(cè)試相關(guān)的工作產(chǎn)品,如測(cè)試計(jì)劃,測(cè)試設(shè)計(jì)和測(cè)試步驟都要經(jīng)過(guò)評(píng)審。因?yàn)闇y(cè)試是一個(gè)可以量化并度量的過(guò)程。為了測(cè)量測(cè)試過(guò)程,測(cè)試人員應(yīng)建立測(cè)試數(shù)據(jù)庫(kù)。收集和記錄各軟件工程項(xiàng)目中使用的測(cè)試用例,記錄缺陷并按缺陷的嚴(yán)重程度劃分等級(jí)。此外,所建立的測(cè)試規(guī)程應(yīng)能夠支持軟件組終對(duì)測(cè)試過(guò)程的控制和測(cè)量。管理和測(cè)量級(jí)有3個(gè)要實(shí)現(xiàn)的成熟度目標(biāo):建立**范圍內(nèi)的評(píng)審程序,建立測(cè)試過(guò)程的測(cè)量程序和軟件質(zhì)量評(píng)價(jià)。(I)建立**范圍內(nèi)的評(píng)審程序軟件**應(yīng)在軟件生命周期的各階段實(shí)施評(píng)審,以便盡早有效地識(shí)別,分類和消除軟件中的缺陷。建立評(píng)審程序有4個(gè)子目標(biāo):1)管理層要制訂評(píng)審政策支持評(píng)審過(guò)程。2)測(cè)試組和軟件質(zhì)量保證組要確定并文檔化整個(gè)軟件生命周期中的評(píng)審目標(biāo),評(píng)審計(jì)劃。
optimizer)采用的是adagrad,batch_size是40。深度神經(jīng)網(wǎng)絡(luò)模型訓(xùn)練基本都是基于梯度下降的,尋找函數(shù)值下降速度**快的方向,沿著下降方向迭代,迅速到達(dá)局部**優(yōu)解的過(guò)程就是梯度下降的過(guò)程。使用訓(xùn)練集中的全部樣本訓(xùn)練一次就是一個(gè)epoch,整個(gè)訓(xùn)練集被使用的總次數(shù)就是epoch的值。epoch值的變化會(huì)影響深度神經(jīng)網(wǎng)絡(luò)的權(quán)重值的更新次數(shù)。本次實(shí)驗(yàn)使用了80%的樣本訓(xùn)練,20%的樣本驗(yàn)證,訓(xùn)練50個(gè)迭代以便于找到較優(yōu)的epoch值。隨著迭代數(shù)的增加,前端融合模型的準(zhǔn)確率變化曲線如圖5所示,模型的對(duì)數(shù)損失變化曲線如圖6所示。從圖5和圖6可以看出,當(dāng)epoch值從0增加到5過(guò)程中,模型的驗(yàn)證準(zhǔn)確率和驗(yàn)證對(duì)數(shù)損失有一定程度的波動(dòng);當(dāng)epoch值從5到50的過(guò)程中,前端融合模型的訓(xùn)練準(zhǔn)確率和驗(yàn)證準(zhǔn)確率基本不變,訓(xùn)練和驗(yàn)證對(duì)數(shù)損失基本不變;綜合分析圖5和圖6的準(zhǔn)確率和對(duì)數(shù)損失變化曲線,選取epoch的較優(yōu)值為30。確定模型的訓(xùn)練迭代數(shù)為30后,進(jìn)行了10折交叉驗(yàn)證實(shí)驗(yàn)。前端融合模型的10折交叉驗(yàn)證的準(zhǔn)確率是%,對(duì)數(shù)損失是,混淆矩陣如圖7所示,規(guī)范化后的混淆矩陣如圖8所示。前端融合模型的roc曲線如圖9所示,該曲線反映的是隨著檢測(cè)閾值變化下檢測(cè)率與誤報(bào)率之間的關(guān)系曲線。多平臺(tái)兼容性測(cè)試顯示Linux環(huán)境下存在驅(qū)動(dòng)適配問(wèn)題。
它已被擴(kuò)展成與軟件生命周期融為一體的一組已定義的活動(dòng)。測(cè)試活動(dòng)遵循軟件生命周期的V字模型。測(cè)試人員在需求分析階段便開(kāi)始著手制訂測(cè)試計(jì)劃,并根據(jù)用戶或客戶需求建立測(cè)試目標(biāo),同時(shí)設(shè)計(jì)測(cè)試用例并制訂測(cè)試通過(guò)準(zhǔn)則。在集成級(jí)上,應(yīng)成立軟件測(cè)試**,提供測(cè)試技術(shù)培訓(xùn),關(guān)鍵的測(cè)試活動(dòng)應(yīng)有相應(yīng)的測(cè)試工具予以支持。在該測(cè)試成熟度等級(jí)上,沒(méi)有正式的評(píng)審程序,沒(méi)有建立質(zhì)量過(guò)程和產(chǎn)品屬性的測(cè)試度量。集成級(jí)要實(shí)現(xiàn)4個(gè)成熟度目標(biāo),它們分別是:建立軟件測(cè)試**,制訂技術(shù)培訓(xùn)計(jì)劃,軟件全壽命周期測(cè)試,控制和監(jiān)視測(cè)試過(guò)程。(I)建立軟件測(cè)試**軟件測(cè)試的過(guò)程及質(zhì)量對(duì)軟件產(chǎn)品質(zhì)量有直接影響。由于測(cè)試往往是在時(shí)間緊,壓力大的情況下所完成的一系列復(fù)雜的活動(dòng),因此應(yīng)由訓(xùn)練有素的人員組成測(cè)試組。測(cè)試組要完成與測(cè)試有關(guān)的多種活動(dòng),包括負(fù)責(zé)制訂測(cè)試計(jì)劃,實(shí)施測(cè)試執(zhí)行,記錄測(cè)試結(jié)果,制訂與測(cè)試有關(guān)的標(biāo)準(zhǔn)和測(cè)試度量,建立鍘試數(shù)據(jù)庫(kù),測(cè)試重用,測(cè)試**以及測(cè)試評(píng)價(jià)等。建立軟件測(cè)試**要實(shí)現(xiàn)4個(gè)子目標(biāo):1)建立全**范圍內(nèi)的測(cè)試組,并得到上級(jí)管理層的領(lǐng)導(dǎo)和各方面的支持,包括經(jīng)費(fèi)支持。2)定義測(cè)試組的作用和職責(zé)。3)由訓(xùn)練有素的人員組成測(cè)試組。云計(jì)算與 AI 融合:深圳艾策的創(chuàng)新解決方案。大連軟件檢測(cè)報(bào)告規(guī)格
5G 與物聯(lián)網(wǎng):深圳艾策的下一個(gè)技術(shù)前沿。云南軟件驗(yàn)收測(cè)試報(bào)告
**小化對(duì)數(shù)損失基本等價(jià)于**大化分類器的準(zhǔn)確度,對(duì)于完美的分類器,對(duì)數(shù)損失值為0。對(duì)數(shù)損失函數(shù)的計(jì)算公式如下:其中,y為輸出變量即輸出的測(cè)試樣本的檢測(cè)結(jié)果,x為輸入變量即測(cè)試樣本,l為損失函數(shù),n為測(cè)試樣本(待檢測(cè)軟件的二進(jìn)制可執(zhí)行文件)數(shù)目,yij是一個(gè)二值指標(biāo),表示與輸入的第i個(gè)測(cè)試樣本對(duì)應(yīng)的類別j,類別j指良性軟件或惡意軟件,pij為輸入的第i個(gè)測(cè)試樣本屬于類別j的概率,m為總類別數(shù),本實(shí)施例中m=2。分類器的性能也可用roc曲線(receiveroperatingcharacteristic)評(píng)價(jià),roc曲線的縱軸是檢測(cè)率(true****itiverate),橫軸是誤報(bào)率(false****itiverate),該曲線反映的是隨著檢測(cè)閾值變化下檢測(cè)率與誤報(bào)率之間的關(guān)系曲線。roc曲線下面積(areaunderroccurve,auc)的值是評(píng)價(jià)分類器比較綜合的指標(biāo),auc的值通常介于,較大的auc值一般表示分類器的性能較優(yōu)。(3)特征提取提取dll和api信息特征視圖dll(dynamiclinklibrary)文件為動(dòng)態(tài)鏈接庫(kù)文件,執(zhí)行某一個(gè)程序時(shí),相應(yīng)的dll文件就會(huì)被調(diào)用。一個(gè)應(yīng)用程序可使用多個(gè)dll文件,一個(gè)dll文件也可能被不同的應(yīng)用程序使用。api(applicationprogramminginterface)函數(shù)是windows提供給用戶作為應(yīng)用程序開(kāi)發(fā)的接口。云南軟件驗(yàn)收測(cè)試報(bào)告