快速原型模型部分需求-原型-補充-運行外包公司預先不能明確定義需求的軟件系統(tǒng)的開發(fā),更好的滿足用戶需求并減少由于軟件需求不明確帶來的項目開發(fā)風險。不適合大型系統(tǒng)的開發(fā),前提要有一個展示性的產(chǎn)品原型,在一定程度上的補充,限制開發(fā)人員的創(chuàng)新。螺旋模型每次功能都要**行風險評估,需求設計-測試很大程度上是一種風險驅動的方法體系,在每個階段循環(huán)前,都進行風險評估。需要有相當豐富的風險評估經(jīng)驗和專門知識,在風險較大的項目開發(fā)中,很有必要,多次迭代,增加成本。軟件測試模型需求分析-概要設計-詳細設計-開發(fā)-單元測試-集成測試-系統(tǒng)測試-驗收測試***清楚標識軟件開發(fā)的階段包含底層測試和高層測試采用自頂向下逐步求精的方式把整個開發(fā)過程分成不同的階段,每個階段的工作都很明確,便于控制開發(fā)過程。缺點程序已經(jīng)完成,錯誤在測試階段發(fā)現(xiàn)或沒有發(fā)現(xiàn),不能及時修改而且需求經(jīng)常變化導致V步驟反復執(zhí)行,工作量很大。W模型開發(fā)一個V測試一個V用戶需求驗收測試設計需求分析系統(tǒng)測試設計概要設計集成測試設計詳細設計單元測試設計編碼單元測試集成集成測試運行系統(tǒng)測試交付驗收測試***測試更早的介入,可以發(fā)現(xiàn)開發(fā)初期的缺陷。艾策科技案例研究:某跨國企業(yè)的數(shù)字化轉型實踐。電力軟件系統(tǒng)檢測報告多少錢
嘗試了前端融合、后端融合和中間融合三種融合方法對進行有效融合,有效提高了惡意軟件的準確率,具備較好的泛化性能和魯棒性。實驗結果顯示,相對**且互補的特征視圖和不同深度學習融合機制的使用明顯提高了檢測方法的檢測能力和泛化性能,其中較優(yōu)的中間融合方法取得了%的準確率,對數(shù)損失為,auc值為。有效解決了現(xiàn)有采用二進制可執(zhí)行文件的單一特征類型進行惡意軟件檢測的檢測方法檢測結果準確率不高、可靠性低、泛化性和魯棒性不佳的問題。另外,惡意軟件很難同時偽造良性軟件的多個抽象層次的特征以逃避檢測,本發(fā)明實施例同時融合軟件的二進制可執(zhí)行文件的多個抽象層次的特征,可準確檢測出偽造良性軟件特征的惡意軟件,解決了現(xiàn)有采用二進制可執(zhí)行文件的單一特征類型進行惡意軟件檢測的檢測方法難以檢測出偽造良性軟件特征的惡意軟件的問題。附圖說明為了更清楚地說明本發(fā)明實施例或現(xiàn)有技術中的技術方案,下面將對實施例或現(xiàn)有技術描述中所需要使用的附圖作簡單地介紹,顯而易見地,下面描述中的附圖**是本發(fā)明的一些實施例,對于本領域普通技術人員來講,在不付出創(chuàng)造性勞動的前提下,還可以根據(jù)這些附圖獲得其他的附圖。圖1是前端融合方法的流程圖。軟件安全性從哪方面測試滲透測試報告暴露2個高危API接口需緊急加固。
在不知道多長的子序列能更好的表示可執(zhí)行文件的情況下,只能以固定窗口大小在字節(jié)碼序列中滑動,產(chǎn)生大量的短序列,由機器學習方法選擇可能區(qū)分惡意軟件和良性軟件的短序列作為特征,產(chǎn)生短序列的方法叫n-grams?!?80074ff13b2”的字節(jié)碼序列,如果以3-grams產(chǎn)生連續(xù)部分重疊的短序列,將得到“080074”、“0074ff”、“74ff13”、“ff13b2”四個短序列。每個短序列特征的權重表示有多種方法。**簡單的方法是如果該短序列在具體樣本中出現(xiàn),就表示為1;如果沒有出現(xiàn),就表示為0,也可以用。本實施例采用3-grams方法提取特征,3-grams產(chǎn)生的短序列非常龐大,將產(chǎn)生224=(16,777,216)個特征,如此龐大的特征集在計算機內存中存儲和算法效率上都是問題。如果短序列特征的tf較小,對機器學習可能沒有意義,選取了tf**高的5000個短序列特征,計算每個短序列特征的,每個短序列特征的權重是判斷其所在軟件樣本是否為惡意軟件的依據(jù),也是區(qū)分每個軟件樣本的依據(jù)。(4)前端融合前端融合的架構如圖4所示,前端融合方式將三種模態(tài)的特征合并,然后輸入深度神經(jīng)網(wǎng)絡,隱藏層的***函數(shù)為relu,輸出層的***函數(shù)是sigmoid,中間使用dropout層進行正則化,防止過擬合,優(yōu)化器。
[3]軟件測試方法原則編輯1.盡早不斷測試的原則應當盡早不斷地進行軟件測試。據(jù)統(tǒng)計約60%的錯誤來自設計以前,并且修正一個軟件錯誤所需的費用將隨著軟件生存周期的進展而上升。錯誤發(fā)現(xiàn)得越早,修正它所需的費用就越少。[4]測試用例由測試輸入數(shù)據(jù)和與之對應的預期輸出結果這兩部分組成。[4]3.**測試原則(1)**測試原則。這是指軟件測試工作由在經(jīng)濟上和管理上**于開發(fā)機構的**進行。程序員應避免檢査自己的程序,程序設計機構也不應測試自己開發(fā)的程序。軟件開發(fā)者難以客觀、有效地測試自己的軟件,而找出那些因為對需求的誤解而產(chǎn)生的錯誤就更加困難。[4](2)合法和非合法原則。在設計時,測試用例應當包括合法的輸入條件和不合法的輸入條件。[4](3)錯誤群集原則。軟件錯誤呈現(xiàn)群集現(xiàn)象。經(jīng)驗表明,某程序段剩余的錯誤數(shù)目與該程序段中已發(fā)現(xiàn)的錯誤數(shù)目成正比,所以應該對錯誤群集的程序段進行重點測試。[4](4)嚴格性原則。嚴格執(zhí)行測試計劃,排除測試的隨意性。[4](5)覆蓋原則。應當對每一個測試結果做***的檢查。[4](6)定義功能測試原則。檢查程序是否做了要做的事*是成功的一半,另一半是看程序是否做了不屬于它做的事。[4](7)回歸測試原則。應妥善保留測試用例。5G 與物聯(lián)網(wǎng):深圳艾策的下一個技術前沿。
沒有滿足用戶的需求1未達到需求規(guī)格說明書表明的功能2出現(xiàn)了需求規(guī)格說明書指明不會出現(xiàn)的錯誤3軟件功能超出了需求規(guī)格說明書指明的范圍4軟件質量不夠高維護性移植性效率性可靠性易用性功能性健壯性等5軟件未達到軟件需求規(guī)格說明書未指出但是應該達到的目標計算器沒電了下次還得能正常使用6測試或用戶覺得不好軟件缺陷的表現(xiàn)形式1功能沒有完全實現(xiàn)2產(chǎn)品的實際結果和所期望的結果不一致3沒有達到需求規(guī)格說明書所規(guī)定的的性能指標等4運行出錯斷電運行終端系統(tǒng)崩潰5界面排版重點不突出,格式不統(tǒng)一6用戶不能接受的其他問題軟件缺陷產(chǎn)生的原因需求錯誤需求記錄錯誤設計說明錯誤代碼錯誤兼容性錯誤時間不充足缺陷的信息缺陷id缺陷標題缺陷嚴重程度缺陷的優(yōu)先級缺陷的所屬模塊缺陷的詳細描述缺陷提交時間缺陷的嚴重程度劃分1blocker系統(tǒng)癱瘓異常退出計算錯誤大部分功能不能使用死機2major功能點不符合用戶需求數(shù)據(jù)丟失3normal**功能特定調點斷斷續(xù)續(xù)4Trivial細小的錯誤優(yōu)先級劃分緊急高中低。第三方驗證實際啟動速度較廠商宣稱慢0.7秒。軟件安全性從哪方面測試
艾策醫(yī)療檢測中心為體外診斷試劑提供全流程合規(guī)性驗證服務。電力軟件系統(tǒng)檢測報告多少錢
這種傳統(tǒng)方式幾乎不能檢測未知的新的惡意軟件種類,能檢測的已知惡意軟件經(jīng)過簡單加殼或混淆后又不能檢測,且使用多態(tài)變形技術的惡意軟件在傳播過程中不斷隨機的改變著二進制文件內容,沒有固定的特征,使用該方法也不能檢測。新出現(xiàn)的惡意軟件,特別是zero-day惡意軟件,在釋放到互聯(lián)網(wǎng)前,都使用主流的反**軟件測試,確保主流的反**軟件無法識別這些惡意軟件,使得當前的反**軟件通常對它們無能為力,只有在惡意軟件大規(guī)模傳染后,捕獲到這些惡意軟件樣本,提取簽名和更新簽名庫,才能檢測這些惡意軟件。基于數(shù)據(jù)挖掘和機器學習的惡意軟件檢測方法將可執(zhí)行文件表示成不同抽象層次的特征,使用這些特征來訓練分類模型,可實現(xiàn)惡意軟件的智能檢測,基于這些特征的檢測方法也取得了較高的準確率。受文本分類方法的啟發(fā),研究人員提出了基于二進制可執(zhí)行文件字節(jié)碼n-grams的惡意軟件檢測方法,這類方法提取的特征覆蓋了整個二進制可執(zhí)行文件,包括pe文件頭、代碼節(jié)、數(shù)據(jù)節(jié)、導入節(jié)、資源節(jié)等信息,但字節(jié)碼n-grams特征通常沒有明顯的語義信息,大量具有語義的信息丟失,很多語義信息提取不完整。此外,基于字節(jié)碼n-grams的檢測方法提取代碼節(jié)信息考慮了機器指令的操作數(shù)。電力軟件系統(tǒng)檢測報告多少錢