激光反無設(shè)備的攝像頭中加裝了高性能的AI圖像處理板,將設(shè)備部署在預(yù)定區(qū)域,AI圖像處理板在算法的加持下,實(shí)現(xiàn)對禁飛區(qū)域空中目標(biāo)的24小時(shí)不間斷AI巡邏,能夠快速發(fā)現(xiàn)、鎖定、處置目標(biāo),在數(shù)秒內(nèi)利用高能激光毀傷無人機(jī)目標(biāo)。要想到達(dá)更加精細(xì)的識別目的,板卡的性能很關(guān)鍵,同時(shí)視頻數(shù)據(jù)的質(zhì)量同樣重要。高幀頻的相機(jī)能夠捕捉更多畫面細(xì)節(jié),這樣高性能圖像處理板在進(jìn)行AI識別處理時(shí),就能夠獲取更多信息,識別的精度就會(huì)提升。像成都慧視開發(fā)的高性能高幀頻圖像處理板就考慮到了這一點(diǎn),通過RK3588和FPGA接口的深度定制,輕松打破高幀頻視頻的輸入輸出,讓板卡實(shí)現(xiàn)更精細(xì)的數(shù)據(jù)處理。成都慧視光電技術(shù)有限公司推出基于全國產(chǎn)化RV1126板的高性能圖像跟蹤板卡。青海目標(biāo)跟蹤型號
實(shí)際上,跟蹤和檢測是分不開的,比如傳統(tǒng)TLD框架使用的在線學(xué)習(xí)檢測器,或KCF密集采樣訓(xùn)練的檢測器,以及當(dāng)前基于深度學(xué)習(xí)的卷積特征跟蹤框架。一方面,跟蹤能夠保證速度上的需要,而檢測能夠有效地修正跟蹤的累計(jì)誤差。不同的應(yīng)用場合對跟蹤的要求也不一樣,比如特定目標(biāo)跟蹤中的人臉跟蹤,在跟蹤成功率、準(zhǔn)確度和魯棒性方面都有具體的要求。另外,跟蹤的另一個(gè)分支是多目標(biāo)跟蹤(MultipleObjectTracking)。多目標(biāo)跟蹤并不是簡單的多個(gè)單目標(biāo)跟蹤,因?yàn)樗粌H涉及到各個(gè)目標(biāo)的持續(xù)跟蹤,還涉及到不同目標(biāo)之間的身份識別、自遮擋和互遮擋的處理,以及跟蹤和檢測結(jié)果的數(shù)據(jù)關(guān)聯(lián)等。質(zhì)量目標(biāo)跟蹤有什么智能目標(biāo)識別及追蹤,讓目標(biāo)無處可藏。
無人機(jī)在軍備領(lǐng)域有著突出作用,它不僅能幫助進(jìn)行信息偵查,還能進(jìn)行智能炮彈高空精細(xì)打擊。其中,在智能精細(xì)打擊領(lǐng)域,少不了人工智能的參與。通過人工智能的控制分析,能夠?qū)崿F(xiàn)對打擊目標(biāo)的AI識別。選擇這樣的方式,能夠減少末端打擊時(shí)對方電子干擾的影響,盡可能保證無人機(jī)的重復(fù)使用,圖像處理設(shè)備顯然比無人機(jī)本身更加經(jīng)濟(jì)。除了硬件方面,要實(shí)現(xiàn)這樣的精細(xì)打擊,算法的能力至關(guān)重要。在實(shí)際應(yīng)用落地之前就需要大量的模擬試驗(yàn)來驗(yàn)證算法的識別能力,這個(gè)過程周期不可估量。傳統(tǒng)方式下,需要大量的外場測試驗(yàn)證,整個(gè)流程繁瑣費(fèi)時(shí)費(fèi)力。而這個(gè)工具的出現(xiàn),則很好的優(yōu)化了這個(gè)過程。
然后在下一幀采集的圖像中對目標(biāo)對象進(jìn)行特征提??;特征匹配的過程既是將提取出來的目標(biāo)對象的特征與我們事先已經(jīng)建立的特征模板進(jìn)行匹配,通過與特征模板的相似程度來確定被跟蹤的目標(biāo)對象,實(shí)現(xiàn)對目標(biāo)的跟蹤?;谔卣鞯母櫵惴ǖ膬?yōu)點(diǎn)在于速度快、對運(yùn)動(dòng)目標(biāo)的尺度、形變和亮度等變化不敏感,能滿足特定場合的處理要求。但由于特征具有稀疏性和不規(guī)則性,所以該算法對于噪聲、遮擋、圖像模糊等比較敏感,如果目標(biāo)發(fā)生旋轉(zhuǎn),則部分特征點(diǎn)會(huì)消失,新的特征點(diǎn)會(huì)出現(xiàn),因此需要對匹配模板進(jìn)行更新。智能跟蹤板在無人機(jī)的應(yīng)用 。
目標(biāo)跟蹤(Target Tracking)是近年來計(jì)算機(jī)視覺領(lǐng)域比較活躍的研究方向之一,它包含從目標(biāo)的圖像序列中檢測、分類、識別、跟蹤并對其行為進(jìn)行理解和描述,屬于圖像分析和理解的范疇。從技術(shù)角度而言,目標(biāo)跟蹤的研究內(nèi)容相當(dāng)豐富,主要涉及到模式識別、圖像處理、計(jì)算機(jī)視覺、人工智能等學(xué)科知識;同時(shí),動(dòng)態(tài)場景中運(yùn)動(dòng)的快速分割、目標(biāo)的非剛性運(yùn)動(dòng)、目標(biāo)自遮擋和目標(biāo)之間互遮擋的處理等問題也為目標(biāo)跟蹤研究帶來了一定的挑戰(zhàn)。由于目標(biāo)跟蹤在視頻會(huì)議、安全監(jiān)控、導(dǎo)彈制導(dǎo)、醫(yī)療診斷、高級人機(jī)交互及基于內(nèi)容的圖像存儲(chǔ)與檢索等方面具有廣泛的應(yīng)用前景和潛在的經(jīng)濟(jì)價(jià)值。目標(biāo)跟蹤圖像分析是人工智能的重要組成部分。重慶流暢目標(biāo)跟蹤
工程師以RK3399PRO核心板為基礎(chǔ)進(jìn)行定制開發(fā),讓攝像頭更加智能高效,能夠輸出高清流的圖像視頻。青海目標(biāo)跟蹤型號
在很長一段時(shí)間內(nèi),傳統(tǒng)的糧庫害蟲檢查方法是依靠人工巡檢,用肉眼觀察,逐倉篩查的方法,這種方法覆蓋面不足且效率低下,篩查一次將耗費(fèi)工作人員的大量時(shí)間精力。隨著技術(shù)的發(fā)展,AI化的篩查逐步采用,通過算法的AI識別實(shí)現(xiàn)自動(dòng)化篩查。方法基于高像素高清攝像機(jī),實(shí)時(shí)遠(yuǎn)程監(jiān)控糧庫,一旦發(fā)現(xiàn)害蟲就能夠立即向管理平臺(tái)發(fā)出告警,有效降低巡檢成本和壓力,提升工作效率。這之中,實(shí)現(xiàn)AI識別處理的傳感器同樣重要,面對復(fù)雜的糧庫環(huán)境,一個(gè)高性能能夠快速處理數(shù)據(jù)的圖像處理板是關(guān)鍵。青海目標(biāo)跟蹤型號