據(jù)統(tǒng)計,80%以上的計算機主要用于數(shù)據(jù)處理,這類工作量大面寬,決定了計算機應(yīng)用的主導(dǎo)方向。數(shù)據(jù)處理從簡單到復(fù)雜已經(jīng)歷了三個發(fā)展階段,它們是:電子數(shù)據(jù)處理它是以文件系統(tǒng)為手段,實現(xiàn)一個部門內(nèi)的單項管理。管理信息系統(tǒng)它是以數(shù)據(jù)庫技術(shù)為工具,實現(xiàn)一個部門的大范圍管理,以提高工作效率。決策支持系統(tǒng)它是以數(shù)據(jù)庫、模型庫和方法庫為基礎(chǔ),幫助管理決策者提高決策水平,改善運營策略的正確性與有效性。目前,數(shù)據(jù)處理已普遍地應(yīng)用于辦公自動化、企事業(yè)計算機輔助管理與決策、情報檢索、圖書管理、電影電視動畫設(shè)計、會計電算化等等各行各業(yè)。數(shù)據(jù)處理技術(shù)的發(fā)展及其應(yīng)用的廣度和深度,極大地影響了人類社會發(fā)展的進(jìn)程。江蘇購買數(shù)據(jù)處理價格多少
挖掘:與前面統(tǒng)計和分析過程不同的是,數(shù)據(jù)挖掘一般沒有什么預(yù)先設(shè)定好的主題,主要是在現(xiàn)有數(shù)據(jù)上面進(jìn)行基于各種算法的計算,從而起到預(yù)測的效果,從而實現(xiàn)一些高級別數(shù)據(jù)分析的需求。比較典型算法有用于聚類的K-Means、用于統(tǒng)計學(xué)習(xí)的SVM和用于分類的NaiveBayes,主要使用的工具有Hadoop的Mahout等。該過程的特點和挑戰(zhàn)主要是用于挖掘的算法很復(fù)雜,并且計算涉及的數(shù)據(jù)量和計算量都很大,還有,常用數(shù)據(jù)挖掘算法都以單線程為主。數(shù)據(jù)處理(或信息處理)數(shù)據(jù)處理是指對各種數(shù)據(jù)進(jìn)行收集、存儲、整理、分類、統(tǒng)計、加工、利用、傳播等一系列活動的統(tǒng)稱。南通現(xiàn)代數(shù)據(jù)處理價錢數(shù)據(jù)處理貫穿于社會生產(chǎn)和社會生活的各個領(lǐng)域。
數(shù)據(jù)處理工具:根據(jù)數(shù)據(jù)處理的不同階段,有不同的專業(yè)工具來對數(shù)據(jù)進(jìn)行不同階段的處理。在數(shù)據(jù)轉(zhuǎn)換部分,有專業(yè)的ETL工具來幫助完成數(shù)據(jù)的提取、轉(zhuǎn)換和加載,相應(yīng)的工具有Informatica和開源的Kettle。在數(shù)據(jù)存儲和計算部分,指的數(shù)據(jù)庫和數(shù)據(jù)倉庫等工具,有Oracle,DB2,MySQL等有名廠商,列式數(shù)據(jù)庫在大數(shù)據(jù)的背景下發(fā)展也非???。在數(shù)據(jù)可視化部分,需要對數(shù)據(jù)的計算結(jié)果進(jìn)行分析和展現(xiàn),有BIEE,Microstrategy,Yonghong的Z-Suite等工具。數(shù)據(jù)處理的軟件有EXCELMATLABOrigin等等,當(dāng)前流行的圖形可視化和數(shù)據(jù)分析軟件有Matlab,Mathmatica和Maple等。這些軟件功能強大,可滿足科技工作中的許多需要,但使用這些軟件需要一定的計算機編程知識和矩陣知識,并熟悉其中大量的函數(shù)和命令。而使用Origin就像使用Excel和Word那樣簡單,只需點擊鼠標(biāo),選擇菜單命令就可以完成大部分工作,獲得滿意的結(jié)果。
采集:在大數(shù)據(jù)的采集過程中,其主要特點和挑戰(zhàn)是并發(fā)數(shù)高,因為同時有可能會有成千上萬的用戶來進(jìn)行訪問和操作,比如火車票售票網(wǎng)站和淘寶,它們并發(fā)的訪問量在峰值時達(dá)到上百萬,所以需要在采集端部署大量數(shù)據(jù)庫才能支撐。并且如何在這些數(shù)據(jù)庫之間進(jìn)行負(fù)載均衡和分片的確是需要深入的思考和設(shè)計。統(tǒng)計/分析:統(tǒng)計與分析主要利用分布式數(shù)據(jù)庫,或者分布式計算集群來對存儲于其內(nèi)的大量數(shù)據(jù)進(jìn)行普通的分析和分類匯總等,以滿足大多數(shù)常見的分析需求,在這方面,一些實時性需求會用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存儲Infobright等,而一些批處理,或者基于半結(jié)構(gòu)化數(shù)據(jù)的需求可以使用Hadoop。方式:根據(jù)處理設(shè)備的結(jié)構(gòu)方式、工作方式,以及數(shù)據(jù)的時間空間分布方式的不同,數(shù)據(jù)處理有不同的方式。
統(tǒng)計與分析這部分的主要特點和挑戰(zhàn)是分析涉及的數(shù)據(jù)量大,其對系統(tǒng)資源,特別是I/O會有極大的占用。導(dǎo)入/預(yù)處理:雖然采集端本身會有很多數(shù)據(jù)庫,但是如果要對這些大量數(shù)據(jù)進(jìn)行有效的分析,還是應(yīng)該將這些來自前端的數(shù)據(jù)導(dǎo)入到一個集中的大型分布式數(shù)據(jù)庫,或者分布式存儲集群,并且可以在導(dǎo)入基礎(chǔ)上做一些簡單的清洗和預(yù)處理工作。也有一些用戶會在導(dǎo)入時使用來自Twitter的Storm來對數(shù)據(jù)進(jìn)行流式計算,來滿足部分業(yè)務(wù)的實時計算需求。導(dǎo)入與預(yù)處理過程的特點和挑戰(zhàn)主要是導(dǎo)入的數(shù)據(jù)量大,每秒鐘的導(dǎo)入量經(jīng)常會達(dá)到百兆,甚至千兆級別。不同的處理方式要求不同的硬件和軟件支持。南通現(xiàn)代數(shù)據(jù)處理價錢
公司的宗旨是以客戶為中心。江蘇購買數(shù)據(jù)處理價格多少
數(shù)據(jù)是對事實、概念或指令的一種表達(dá)形式,可由人工或自動化裝置進(jìn)行處理。數(shù)據(jù)經(jīng)過解釋并賦予一定的意義之后,便成為信息。數(shù)據(jù)處理是對數(shù)據(jù)的采集、存儲、檢索、加工、變換和傳輸。數(shù)據(jù)處理的基本目的是從大量的、可能是雜亂無章的、難以理解的數(shù)據(jù)中抽取并推導(dǎo)出對于某些特定的人們來說是有價值、有意義的數(shù)據(jù)。數(shù)據(jù)處理是系統(tǒng)工程和自動控制的基本環(huán)節(jié)。數(shù)據(jù)處理貫穿于社會生產(chǎn)和社會生活的各個領(lǐng)域。數(shù)據(jù)處理技術(shù)的發(fā)展及其應(yīng)用的廣度和深度,極大地影響了人類社會發(fā)展的進(jìn)程。江蘇購買數(shù)據(jù)處理價格多少
無錫新樂康科技有限公司在同行業(yè)領(lǐng)域中,一直處在一個不斷銳意進(jìn)取,不斷制造創(chuàng)新的市場高度,多年以來致力于發(fā)展富有創(chuàng)新價值理念的產(chǎn)品標(biāo)準(zhǔn),在江蘇省等地區(qū)的數(shù)碼、電腦中始終保持良好的商業(yè)口碑,成績讓我們喜悅,但不會讓我們止步,殘酷的市場磨煉了我們堅強不屈的意志,和諧溫馨的工作環(huán)境,富有營養(yǎng)的公司土壤滋養(yǎng)著我們不斷開拓創(chuàng)新,勇于進(jìn)取的無限潛力,無錫新樂康科技供應(yīng)攜手大家一起走向共同輝煌的未來,回首過去,我們不會因為取得了一點點成績而沾沾自喜,相反的是面對競爭越來越激烈的市場氛圍,我們更要明確自己的不足,做好迎接新挑戰(zhàn)的準(zhǔn)備,要不畏困難,激流勇進(jìn),以一個更嶄新的精神面貌迎接大家,共同走向輝煌回來!